

1.1

1.2

1.3

1.4

1.5

1.5.1

1.5.2

1.6

1.6.1

1.6.2

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

Table of Contents
Introduction

Quickstart

Architecture

GUI Layout

Ports List

Port Configuration

Port Rates

Streams

Stream Configuration

Stream Save/Open

Device Emulation

Statistics

Stream Statistics

Protocol Builder Scripts

Session Save/Restore

Settings

Command Line Options

Python Scripting

2

Ostinato is a packet crafter, network traffic generator and analyzer with a friendly GUI and powerful Python API
for network test automation.

User Guide
Quickstart
Architecture
GUI Layout
Ports List

Port Configuration
Port Rates

Streams
Stream Configuration
Stream Save/Open

Device Emulation
Statistics
Stream Statistics
Protocol Builder Scripts
Session Save/Restore
Settings
Command Line Options
Python Scripting

3

http://ostinato.org

Quickstart

How to craft and send 10 UDP packets
1. At startup notice that the main workspace is divided into 3 main sections - the ports list, streams list and

statistics window -

2. You should see a port group entry for "127.0.0.1" in the ports list with a green status
3. Double click the port group to expand it and you will see all the ports on your local system (if you don't see

any ports, check FAQ - Port group has no interfaces)
4. Select the port in the ports list on which you want to send packets
5. In the Stream List pane, right click and create a new stream
6. Click the newly created stream to select it and then right click to edit it
7. This will open the Stream Configuration Dialog. This dialog is packed with a lot of options, but don't worry all

you need to do for now is -
On the "Protocol Selection" tab, select the protocols Mac - Ethernet II - IPv4 - UDP
On the "Protocol Data" tab, go to the Internet Protocol ver 4 (IPv4) section and enter source IP as
1.1.1.1 and destination IP as 2.2.2.2
On the "Stream Control" tab, configure no. of packets as 10
On the "Packet View" tab, you can preview how your packets will look
Click OK

8. Click the "Apply" Button in the Stream List pane (Do not skip this step, otherwise no packets will be
sent!)

9. In the Statistics window, select the same port for which you configured the stream (Click the port's column
heading to select the full column, otherwise no packets will be sent)

10. Click the Start Transmit button
11. Watch the Frames Sent stats increase for that port

4

http://ostinato.org/docs/faq#q-port-group-has-no-interfaces

See these steps in action -

Video link

5

http://youtube.com/watch?v=On64lQYEFlY

Controller-Agent Architecture
Ostinato has a controller-agent architecture. There are two corresponding binaries - ostinato is the controller
GUI and drone is the agent. Both the components are required. The controller can also be a python script
using the python-ostinato API.

The agent does all the heavy lifting of traffic generation and capture. The controller instructs the agent and
fetches reporting data like statistics etc. from the agent. Since the agent does the packet generation, hence the
DUT (Device Under Test) is connected to the agent and not to the controller.

You can also consider this as frontend-backend where the Ostinato controller is the frontend (GUI or API)
and backend is the Drone agent. This guide however, will use the controller-agent terminology

Default Mode
Although the controller and agent are two different binaries, they can also run on the same computer - this is the
default mode. Whenever you run the ostinato GUI binary, it will internally spawn the drone agent binary also.
The local agent is represented in the controller by a port group with IP address 127.0.0.1

6

One controller - many agents
One controller can connect to many agents as shown below -

One example of this use case is when a single agent does not have enough ports to connect to the DUT or SUT
(System Under Test)

Many controllers - one agent
Multiple controllers can connect to the same agent as shown below -

One example of this use case is when an agent has a lot of ports and different controllers are using different ports
of the agent connected to different DUT(s).

Cross Platform
Since the controllers and agents can run on different computers, they can be running on same or different
Operating Systems - e.g. you can have a Ostinato GUI controller running on Mac OSX laptop connected to an
agent running on Windows Server and another agent running on a Linux Server.

7

Important Notes
1. Ostinato controller-agent architecture is NOT like the iperf client-server architecture. Ostinato and Drone do

not exchange any data packets
2. The Ostinato GUI controller sends stream and device configuration information to the agent only when you

click the Apply button. So if you add/delete/edit streams and/or devices but forget to click Apply , your
changes won't be reflected when you start the transmit

8

GUI Layout

The Ostinato GUI main window layout is composed of 3 sections -

PortGroups and Ports List
This section displays all the port groups and all the ports within those port groups in a tree hierarchy

Streams and Devices
This section displays all the streams and devices for the currently selected port

Statistics
This section displays statistics for ALL the ports across all port groups

9

Ports List

The ports list shows all the ports that you can control. Ports are grouped into Port Groups. A Port Group is just a
computer or device (local or remote) running the controller component (drone).

The port group status icons are as follows -

Icon Description

The client is not connected to the port group

The agent is trying to connect to the port group

The agent is connected to the port group

The agent faced some error connecting to the port group

The port status icons are as follows -

Icon Description

The port current link status is unknown

The port link status is down

The port link status is up

NOTE: If port is administratively disabled, it may not be listed - this is a Pcap/WinPcap limitation. If no ports are
listed - check that drone (the controller component) is running with administrative privileges. For more
troubleshooting tips, check the FAQ

Actions

Icon Action Description

10

http://ostinato.org/docs/faq

New Port
Group

Adds a new remote computer to the list and connects to it. You can specify a
hostname or IP address and optionally the port number

Delete Port
Group Deletes a remote computer from the list

Connect Port
Group Attempts to reconnect to a disconnected remote computer

Disconnect
Port Group

Disconnects from a remote computer. The remote computer is not removed
from the list. You can connect to it again

Exclusive
Port Control See Exclusive Port Control

Port
Configuration Configure Port properties

Controlling multiple computers
1. On the remote computer that you want to control, run drone (the controller component)
2. In the Ostinato GUI, goto File | New Port Group and enter the IP address
3. The remote computer should appear as a new Port Group in the Ports List

You can connect to any number of remote computers

11

Port Configuration
Currently the following port properties are available -

Transmit Mode

Sequential Streams: Streams are sent one after the other in a sequential fashion. All packets of one stream are
sent before the next stream.

Example: There are 2 streams - TCP and UDP, the TCP stream configured to send 100 packets at the rate of 10
packets/sec and the UDP stream configured to send 500 packets at the rate of 5 packets/sec. In sequential
streams transmit mode, 100 TCP packets will be sent first at the rate of 10 packets/sec, followed by 500 UDP
packets at the rate of 5 packets/sec.

Interleaved Streams: Streams are interleaved based on their packet/burst rate. Packets of all streams are sent
together in an interleaved fashion. This is a "continuous" mode - you cannot configure the number of
packets/bursts to be sent, you can only configure the packet/burst rates.

Example: There are 2 streams - TCP and UDP, the TCP stream configured to send at the rate of 10 packets/sec
and the UDP stream configured to send at the rate of 5 packets/sec. In interleaved streams transmit mode, 15
packets will be sent per second, of which 10 packets will be TCP and 5 will be UDP.

Reservation

Starting version 0.7, you can "reserve" ports that you are using - once reserved, other agents that connect to the
same drone controller will see your name against the port. If a port is reserved by someone else, you can "force-
reserve" it.

Note that reserving a port does NOT restrict others from changing any attributes of the port or even the
streams configured on the port. Users are still expected to be cooperative and play nice with each other.

The name used for reservation is taken from the USER environment variable (USERNAME , for Windows users)

You can restrict the list of ports to your reserved ports using View | Show My Reserved Ports Only

Exclusive Port Control

Exclusive Port Control for Controlled Environment Testing is an "experimental" feature

To prevent the OS from sending packets on a port that you are using, you can take exclusive control of the port.
To do so, select the port in the ports list, goto File | Exclusive Control (alternatively, right-click and use the same
option from the context menu).

If exclusive control was granted the port's icon in the ports list is decorated with a ringed border as shown below
for Port 0 and Port 2 -

12

NOTE: This feature is currently available only on Windows and not on other platforms. For Windows, this feature
is implemented by using an external command line application - bindconfig

Stream Statistics

(Available release 0.9 onwards)

By default statistics are tracked at the port or interface granularity. By enabling Stream Statistics, you can track
stats on the selected port at a per stream granularity

See Stream Statistics for more information on how to use this feature.

13

https://github.com/pstavirs/bindconfig

Average/Aggregate Port Rates
The average/aggregate port rate for all the active streams combined is displayed. Changing the
average/aggregate port rate will change the rate for all active streams. The delta of the old rate and new rate is
distributed amongst all the active streams such that the ratio of rates between the streams remain the same.

14

Creating, editing, duplicating and deleting streams
To create a stream, first select the appropriate port in the ports list and then goto File | New Stream (alternatively
use the right-click context menu).

To insert a stream between two existing streams, select the bottom stream and then create a new stream - the
new stream will be created before the selected stream.

To name the stream, double-click inside the 'name' cell and type a suitable name. The stream can be enabled or
disabled using the checkbox. You can configure the flow of packets across all the streams using the 'Goto'
column. By default after sending one stream, Ostinato proceeds to the next. You can alternatively configure it to
stop or go back to the first stream.

To configure more details about a stream including protocols, packet lengths, rates etc, see Stream Configuration

Starting version 0.7, to duplicate one or more streams, select the stream(s) that you wish to duplicate and then
goto File | Duplicate Stream (alternatively use the right-click context menu) - you will be prompted to enter the
number of copies you wish to create.

To delete a stream, select the stream(s) and then goto File | Delete Stream (alternatively use the right-click
context menu)

IMPORTANT: The agent sends stream configuration information to the controller only when you click the "Apply"
button. So if you add/delete/edit streams but forget to click "Apply", your changes won't be reflected when you
start the transmit

15

Stream Configuration
To configure a stream's properties select the stream and goto File | Edit Stream (or alternatively use the right-
click context menu). You can even double click the stream icon in the stream list to edit the stream.

Whichever method you employ to edit the stream, you will now see the Stream Configuration Dialog Box. This
dialog box has five tabbed pages -

Protocol Selection

Frame Length

On this page, you can configure the frame length. You can set the frame length to be a fixed value or use any of
the other modes viz. incrementing, decrementing or random. For the non-fixed modes, you can configure a
minimum and maximum value between which the frame length will vary.

NOTE: For the non-fixed modes, you should configure the stream to send more than 1 packet otherwise you may
not see any variation in the frame lengths.

NOTE: The frame length values specified includes the 4 byte FCS.

Protocols (Simple Mode)

16

For most usual cases, you can configure the protocols in your packet by clicking on the appropriate radio buttons
as desired. Only standard combinations of the various protocols are allowed here (e.g. you can't have have TCP
after ARP).

If you need a non standard combination, click on advanced mode. Other cases when you may need advanced
mode are -

More than 2 VLAN tags
If you need to use the "UserScript" protocol

NOTE: Each protocol level group here has a "Other" choice - this is not available for user selection but is used
when a non-standard combination is selected using the advanced mode

Protocols (Advanced Mode)

In this mode, you can stack the protocols that you need in any order that you want (unlike simple mode no checks
are performed and you can stack TCP following ARP). You can also stack multiple protocols of the same type
(e.g. IP over IP)

The left pane shows all the available protocols. The right pane shows the protocols that you select for your packet
in the order that you want

Use the following toolbar buttons to configure the protocols required and their order -

Icon Description

Adds the protocol(s) selected in the left pane to the right pane

Moves the protocol selected in the right pane up in order

Moves the protocol selected in the right pane down in order

Removes the protocol selected in the right pane from the selected list of protocols

Protocol Data
On this page you can configure the fields for each protocol that you selected in the Protocol Selection page

17

Click on the protocol name button to open up the configuration widget for the particular protocol and fill in values
as desired.

NOTE: Currently "Protocol Id" fields for the implemented protocols cannot be modified (e.g. if you have Ethernet
followed by IP, the Ethertype will be set to 0x0800 - you cannot change it)

Variable Fields
Some protocols allow configuring variable fields on the protocol data page for some fields (e.g. Mac/IP
addresses). This page (available starting version 0.7) allows you to vary any field of any protocol, irrespective of
whether you can do the same on the protocol data page or not.

18

Select the protocol, click the '+' button to add a variable field, select the variable field in the list and then specify
which protocol field to vary and how. You can specify 'custom' fields also, if required.

The computation used for varying fields is as follows -

new = (old AND ~mask) OR ((value op n*step) AND mask)

where

old is 8/16/32-bit value (depending on counter type) starting at offset bytes from start of protocol
op is based on the mode - increment/decrement/random
n varies from 0 to (count-1)
new is the value that will replace old

NOTE: The above computation has an implication for how value/step needs to be provided for fields which aren't
aligned to the least significant bit of the counter type - in other words, fields which have trailing zeroes in the
mask.

Consider the vlan header format (numbers in braces indicate field size in bits) -

+-----------------------+------+-----+-----------+
| TPID | Prio | CFI | VLAN ID |
| (16) | (3) | (1) | (12) |
+-----------------------+------+-----+-----------+

Using a Counter8, the 3-bit priority field (possible values 0 to 7) is at byte offset 2 with a mask of 0xE0 - to vary
this field between values 3 and 6, you will have to configure (initial) value as 96 (hex 0x60), count as 4 and step
as 32 (hex 0x20).

Stream Control

On this page you can configure whether you send packets or bursts.

If you send packets, you can configure the number of packets to send and the pkts/sec rate at which to send the
packets.

19

If you send bursts, you can configure the number of bursts to send and the bursts/sec rate at which to send the
bursts; additionally you can configure the burst size in terms of packets per burst (all packets in a burst are sent
back to back without any delay between them)

You can also configure the stream transmission order here. After this stream, you can either goto the next stream
in the stream list order, or goto stream 0 (i.e. go back to the first stream in the stream list), or stop transmission
(even if there are subsequent streams in the stream list)

NOTE: Depending upon the Transmit Mode, some fields may not be available

IMPORTANT: Ostinato tries its best to send the stream at the rate you have requested - but cannot guarantee it.
The rates and accuracy achievable for a port depends on the computer running the controller component (drone).
The computer's inherent processing capability and the current load on the computer are big factors that may
affect the rates. See the FAQ "top-speed" question for achieving maximum transmit rate.

Packet View

On this page you can view the packet that you configured in the traditional fashion - tree view and hex dump.

Unimplemented

If you have configured multiple packets and a varying packet field, you can only view the first of those
packets
You can click on any item in the tree view to highlight the corresponding bytes in the hexdump pane, but not
vice-versa

20

http://ostinato.org/docs/faq#q-what-is-the-maximum-transmit-rate-that-ostinato-supports

Saving and Opening Stream Files
To open a stream file, first select the appropriate port in the ports list and then goto File | Open Streams
(alternatively use the right-click context menu).

To save the streams configured on a port to a file, first select the appropriate port in the ports list and then goto
File | Save Streams (alternatively use the right-click context menu).

Ostinato has its own native file format.

Starting version 0.4, you can import/export PCAP and PDML files.

Starting version 0.7, you can export the configured streams as a python script for use with the Ostinato Python
API (note: you cannot import a python script into the GUI, however). See Python API Guide for more details.

21

https://devguide.ostinato.org/FileFormat.html
https://apiguide.ostinato.org

Device Emulation
Starting version 0.8, you can emulate multiple devices/hosts with ARP/NDP and ping support. Streams can be
configured to resolve their MAC addresses using ARP/NDP if corresponding device(s) are configured.

Before triggering stream transmit, invoke ARP/NDP resolution using the Resolve Neighbors button in the
Statistics Window (see Statistic Window Actions). The controller will resolve all the Gateway IP addresses and all
the destination IP addresses configured in each stream by sending a ARP/NDP request to the DUT. If ARP/NDP
is not resolved (or failed), 00:00:00:00:00:00 will be used as the MAC address. You can check if all ARP/NDP are
resolved in the Device Information pane.

In the reverse direction, if the DUT sends ARP/NDP request for any of the emulated device's IP address, the
Controller will reply back with a suitable ARP/NDP reply. Similarly, if the DUT sends a ping (IPv4 or IPv6)
request, it would reply with a ping reply.

Device Configuration
Instead of configuring each device individually, you configure a device group and specify the number of devices
in the group. This makes it easy to configure multiple devices by configuring only a single device group.

22

To create a device group, first select the appropriate port in the ports list and then goto File | New Device Group
(alternatively, click the Devices Tab and use the right-click context menu).

To configure a device group's properties such as vlan, IP address etc, double-click the device group (or
alternatively use the right-click context menu). You will be presented with the Device Configuration Dialog Box
where you can configure the various attributes of the device group.

To delete a device group, select the device group(s) and then goto File | Delete Device Group (alternatively use
the right-click context menu)

NOTE: Unlike streams, the order of device groups does not matter.

IMPORTANT: The agent sends device group configuration information to the controller only when you click the
"Apply" button. So if you add/delete/edit device groups but forget to click "Apply", your changes won't be
reflected.

23

To see how the configured device groups are expanded to multiple devices, see Device Information

Device Information
Click on the Information radio button to see a list of expanded device groups with one device per row. This
information is fetched from the controller, so make sure you click "Apply" if you don't see any information here.

To view the ARP/NDP cache corresponding to each device, click on the ARP/NDP column corresponding to the
device

Click on the Refresh button to fetch updated information from the Controller. Note that this just fetches
information and does not trigger ARP/NDP resolution.

To trigger ARP/NDP resolution, use the Resolve Neighbors button in the Statistics Window (see Statistic
Window Actions)

24

Statistics Window
The most important thing about using this window is that ALL the toolbar buttons (except Clear All Stats)
operate on the port(s) selected in the statistics window itself (not the port selected in the ports list). If no ports are
selected, no operation will be performed.

Release 0.9 onwards: To select a port, click anywhere in the port column.

Release 0.8 and older: A port is deemed to be "selected" only when the full column is selected - you can do that
by clicking on the "heading row" of the port. See the image below for the right way to select a port -

Actions

Icon Action Description

Start Transmit Starts packet transmit on selected port(s)

Stop Transmit Stops packet transmit on selected port(s)

Clear Stats Clears statistics on selected port(s)

Clear All Stats Clears statistics on all displayed ports (ver 0.6 and earlier: all ports -
displayed and hidden)

Start Capture Starts packet capture on selected port(s)

Stop Capture Stops packet capture on selected port(s)

View Capture View captured packets on selected port(s)

Resolve
Neighbors Resolve Device Neighbors on selected port(s)

Clear
Neighbors Clear Device Neighbors on selected port(s)

Configure View Select which port(s) to display in which order in the Statistics Window

25

26

Stream Statistics
(Available release 0.9 onwards)

The Statistics Window displays interface or port level statistics and may include packets sent by other
applications or the OS itself. This makes it difficult to compare whether received packet/byte count is same as
sent count. Also there may be cases where you may be sending multiple streams and you would like to compare
tx/rx counts for each stream.

For such cases, you can use Stream Statistics.

Configuration
Enable Stream Statistics tracking on both Tx and Rx ports - note you can have multiple Tx/Rx ports
For all streams that you wish to track statistics for -

Include the Special|Signature protocol on the Protocol Selection tab

Configure a unique value as the Stream GUID in Protocol Data tab

NOTE: A port with Stream Statistics Tracking enabled can have streams with the Special Signature and streams
without it - stream level statistics will be tracked only for the former.

Display
Ensure Transmit is finished i.e. Transmit State is Off

27

Select all the Tx/Rx ports for which you wish to fetch and view stream statistics

Click on the Fetch selected port stream stats button
The stream statistics will open in a new tab in the Statistics Window

Limitations
Tracking stream level statistics is CPU intensive and may have an impact on max transmit rate
ICMP streams cannot be tracked
Tx Stream Statistics is counted only after transmit is finished. Fetching stats before transmit is finished will
return 0 values

How does it work
The signature protocol is added to the end of the Ethernet frame just before the FCS. The last 4 bytes are a
magic value indicating that the frame includes a special signature containing the Stream GUID. The transmitted
frames will contain this special signature.

For a port with Stream Statistics tracking enabled -

All received packets are captured and parsed to check for the special signature and if present, further parsed
for the Stream GUID to count the Rx stats
Since all frames are pre-generated in Ostinato, at the end of transmission we can calculate how many
packets of each stream was transmitted to get the Tx stats - this avoids the costly capture/parsing required
for Rx stats, but introduces the limitation that Tx stats are not available until end of transmission

28

How to write a userscript protocol

Introduction
For unimplemented protocols (or implemented protocols not meeting your specific needs) you can write a script
to simulate it.

Scripts are written in QtScript (which is very similar to JavaScript - both based on ECMA Script)

Documentation
Two objects are available to the script - protocol and Protocol (note the difference in case). The script uses
these two objects to define the protocol.

To define your protocol, you need to define the following properties of the protocol object -

NOTE: Some of the functions take an index param. index is incremented by 1 for every packet at runtime - if
you would like to vary your protocol size/contents at runtime you can use it, otherwise just ignore it

Property Type Required? Default
Value Description

 protocolFrameSize(index) Function Mandatory -- function returning the size of
the protocol header in bytes

 protocolFrameValue(index) Function Mandatory --

function returning an array
containing the protocol
header bytes; the size of the
array should be same as
what protocolFrameSize()
returns;

 name String Optional "" (Empty
String) String identifying the protocol

 protocolId(type) Function Optional 0

function returning the
protocol id of your protocol -
type is one of ProtocolIdLlc ,
 ProtocolIdEth , ProtocolIdIp
or ProtocolIdTcpUdp ; if your
protocol immediately follows
a LLC/Eth/IP/TCP/UDP
Header, they will use the
value that you return to fill-in
their ProtocolId fields, if you
don't define this function or
don't provide a value, 0 will
be used

 protocolFrameCksum(index,
type) Function Optional

Calculated
checksum
as per the
CksumType

function returning the cksum
of type for the protocol
header; type is one of
 CksumIp , CksumIpPseudo ,
 CksumTcpUdp

 protocolFrameValueVariable Boolean Optional False

(Deprecated since version
0.7) boolean indicating
whether the protocol
contents vary at run time with

29

every packet; default value is
false - set to true if required

 protocolFrameSizeVariable Boolean Optional False

boolean indicating whether
the protocol header size
varies at run time with every
packet; default value is false
- set to true if required

 protocolFrameVariableCount Integer Optional 1

integer specifying the
minimum number of frames
required to vary its fields/size
before the values are
repeated again; default value
is 1 indicating the protocol
does not vary its fields with
every packet

The protocol object provides some predefined functions that you can use in your functions -

Function Description

 payloadProtocolId(type)
returns the protocol id of the subsequent protocol - use when your
protocol has a "Protocol Id" field that you need to fill-in based on
what protocol follows yours

 protocolFrameOffset(index) returns the byte offset within the frame from which your protocol will
start

 protocolFramePayloadSize(index)
returns the cumulative size of all subsequent protocols and the
payload - use if your protocol has a "length" or "payloadLength" field
that you need to fill-in

 isProtocolFramePayloadValueVariable

returns a boolean indicating if the protocols that appear as payload
to this protocol have varying fields; if your protocol has some fields
dependent on the payload, you can use this function to determine if
your protocol may need to vary its fields accordingly

 isProtocolFramePayloadSizeVariable

returns a boolean indicating if the protocols that appear as payload
to this protocol have a varying size; if your protocol has some fields
dependent on the payload size, you can use this function to
determine if your protocol may need to vary its fields accordingly

 protocolFramePayloadVariableCount

returns the minimum number of frames required by the payload
protocols to vary their fields; if your protocol has some fields
dependent on the payload, you can use this function to determine
your protocol's protocolFrameVariableCount

 protocolFrameHeaderCksum(index,
cksumType)

returns the cumulative checksum of all protocol headers that appear
before your protocol - useful for protocols like TCP/UDP which need
a Pseudo-Ip Checksum of the preceding IP protocol; if cksumType is
not specified, it defaults to CksumIp

 protocolFramePayloadCksum(index,
cksumType)

returns the cumulative checksum of all protocol headers and
payloads that appear after your protocol- use if your protocol has a
"checksum" field that needs the checksum of the payload also; if
 cksumType is not specified, it defaults to CksumIp

The Protocol object is a Read-Only object providing some convenient enums as properties -

ProtocolIdLlc
ProtocolIdEth
ProtocolIdIp
ProtocolIdTcpUdp

30

CksumIp
CksumIpPseudo
CksumTcpUdp

Examples
Here are some example scripts. You can search in the mailing list archives for more.

ICMP
Here`s an example implementing ICMP -

protocol.protocolFrameSize = function() { return 8; }
protocol.protocolFrameValue = function(index)
{
 var type = 8; // Echo Request
 var code = 0;
 var id = 0x9127; // example value
 var seq = 0x1234; // example value
 var sum = (type << 8 | code) + id + seq + (0xFFFF & ~protocol.protocolFramePayloadCksum());

 var pfv = new Array(8);

 pfv[0] = type;
 pfv[1] = code;

 while(sum>>16)
 sum = (sum & 0xFFFF) + (sum >> 16);

 sum = ~sum;
 pfv[2] = sum >> 8;
 pfv[3] = sum & 0xFF;

 pfv[4] = id >> 8;
 pfv[5] = id & 0xFF;

 pfv[6] = seq >> 8;
 pfv[7] = seq & 0xFF;

 return pfv;
}
protocol.protocolId = function() { return 0x1; }

IPv6
Here`s a slightly more involved example for IPv6 (a protocol that is not implemented as of this writing)

protocol.name = "IPv6"

protocol.protocolFrameSize = function() { return 40; }

protocol.protocolId = function(id_type)
{
 if (id_type == Protocol.ProtocolIdEth)
 return 0x86dd;

31

https://groups.google.com/forum/#!forum/ostinato
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/IPv6_packet

 if (id_type == Protocol.ProtocolIdIp)
 return 0x29;

 return 0;
}

protocol.protocolFrameValue = function(index)
{
 var len;
 var pfv = new Array(40);

 // ip version = 6
 pfv[0] = 0x60;

 // payload length
 len = protocol.protocolFramePayloadSize(index);
 pfv[4] = len >> 8;
 pfv[5] = len & 0xFF;

 // Fill-in other fields as required

 // NextHeader
 pfv[6] = protocol.payloadProtocolId(Protocol.ProtocolIdIp);
 pfv[7] = 64; // HopLimit

 return pfv;
}

protocol.protocolFrameCksum = function(index, type)
{
 var sum = 0;

 if (type == Protocol.CksumIpPseudo) {
 sum += protocol.protocolFramePayloadSize(index);
 sum += protocol.payloadProtocolId(Protocol.ProtocolIdIp);
 }
 return ~sum;
}

VxLAN
Inficone has a blog post about writing a userscript for VxLAN

32

http://www.inficone.com/technology/crafting-vxlan-packets-using-ostinato/917/

Save and Restore a Session
Starting version 0.8, you can save the entire session from the GUI to a file. A session includes all the currently
connected port groups, all the ports within each portgroup, all the streams and device groups within each port.
However, if one or more ports (in any port group) is reserved, only ports reserved by the current user will be
saved. To save a session, goto File | Save Session.

A saved session file can be opened to restore the session. The GUI will add all the port groups saved in the
session file, connect to each port group, restore the saved ports and their streams and device groups from the
file. This will overwrite any previous configuration on that port. However, if a port is currently reserved by another
user, it will not be overwitten with the new configuration from the file. A port not saved in the file will also retain its
configuration as before opening the session file. To restore a session, goto File | Open Session.

33

Ostinato
 TODO

Drone
(Drone settings are available release 0.7 onwards)

Drone settings are specified in a .ini file. This file is read only once at startup and never written to by the
application (i.e. it is expected to be user created and edited). It is located at one of the below locations (searched
in given order) -

On Unix and Mac OS X -

1. <path-to-drone-executable>/drone.ini

2. $HOME/.config/Ostinato/drone.ini

3. $HOME/.config/Ostinato.ini

4. /etc/xdg/Ostinato/drone.ini

5. /etc/xdg/Ostinato.ini

On Windows -

1. <path-to-drone-executable>/drone.ini

2. %APPDATA%\Ostinato\drone.ini

3. %APPDATA%\Ostinato.ini

4. %COMMON_APPDATA%\Ostinato\Ostinato.ini

5. %COMMON_APPDATA%\Ostinato.ini

The %APPDATA% path is usually C:\Documents and Settings\User Name\Application Data ; the %COMMON_APPDATA% path is
usually C:\Documents and Settings\All Users\Application Data .

The .ini file contents are case-sensitive and the format is -

[General]
RateAccuracy=
...

[RpcServer]
Address=

[PortList]
Include=
Exclude=

General

RateAccuracy

(Available release 0.8 onwards)

34

To ensure that the actual transmit rate is as close as possible to the configured transmit rate, Drone runs a busy-
wait loop. While this provides the maximum accuracy possible, the CPU utilization is 100% while the transmit is
on. You can however, sacrifice the accuracy to reduce the CPU load.

Supported values currently are High (default), Low

RpcServer

Address

(Available release 0.8 onwards)

By default, the Drone RPC server will listen on all interfaces and local IPv4 adresses for incoming connections
from clients. Specify a single IPv4 or IPv6 address if you want to restrict that. To listen on any IPv6 address, use
 ::

PortList
Use the PortList Include/Exclude list to filter the list of ports that drone manages. Both Include and Exclude are
comma-separated glob patterns which match port names (in case of Windows, port description instead of port
name is matched). For a port to pass the filter and appear on the port list managed by drone, it should be allowed
by the Include list and not disallowed by the Exclude List. An empty Include list matches all ports (i.e. all ports are
allowed). An empty Exclude list matches no ports (i.e. no ports are disallowed)

e.g. to filter out usbmon ports -

[PortList]
Include=
Exclude=usbmon*

or e.g. to have drone work on only eth ports and loopback ports but not on eth0 -

[PortList]
Include=eth*, lo*
Exclude=eth0

35

Command Line Options

Ostinato
(Available release 0.9 onwards)

ostinato [-c] [<session-file>]

Options

Option Required? Description

-c Optional Controller only - don't start local Drone and the corresponding 127.0.0.1
portgroup

Arguments

Argument Required? Description

session-file Optional Open the session file at startup

Drone
TODO

36

Starting from version 0.6, Ostinato provides python bindings to enable scripting support.

See Python API Guide for download, installation, usage and reference information.

37

https://apiguide.ostinato.org

	Introduction
	Quickstart
	Architecture
	GUI Layout
	Ports List
	Port Configuration
	Port Rates

	Streams
	Stream Configuration
	Stream Save/Open

	Device Emulation
	Statistics
	Stream Statistics
	Protocol Builder Scripts
	Session Save/Restore
	Settings
	Command Line Options
	Python Scripting

